Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Prog ; 39(5): e3354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37161726

RESUMO

During the course of biopharmaceutical production, heterologous protein expression in Chinese hamster ovary (CHO) cells imposes a high proteostatic burden that requires cellular adaptation. To mitigate such burden, cells utilize the unfolded protein response (UPR), which increases endoplasmic reticulum (ER) capacity to accommodate elevated rates of protein synthesis and folding. In this study, we show that during production the UPR regulates growth factor signaling to modulate growth and protein synthesis. Specifically, the protein kinase R-like ER kinase (PERK) branch of the UPR is responsible for transcriptional down-regulation of platelet-derived growth factor receptor alpha (PDGFRa) and attenuation of the IRE1-alpha (IRE1a) branch of the UPR. PERK knockout (KO) cell lines displayed reduced growth and viability due to higher rates of apoptosis despite having stabilized PDGFRa levels. Knocking out PERK in an apoptosis impaired (Bax/Bak double KO) antibody-expressing cell line prevented apoptotic cell death and revealed that apoptosis was likely triggered by increased ER stress and reactive oxygen species levels in the PERK KO hosts. Our findings suggest that attenuation of IRE1a and PDGFRa signaling by the PERK branch of the UPR reduces ER protein folding capacity and hence specific productivity of CHO cells in order to mitigate UPR and prevent apoptotic cell death. Last, Bax/Bak/PERK triple KO CHO cell lines displayed 2-3 folds higher specific productivity and titer (up to 8 g/L), suggesting that modulation of PERK signaling during production processes can greatly improve specific productivity in CHO cells.

2.
J Biol Chem ; 298(10): 102454, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063993

RESUMO

Nonribosomal peptide synthetase heterocyclization (Cy) domains generate biologically important oxazoline/thiazoline groups found in natural products, including pharmaceuticals and virulence factors such as some siderophores. Cy domains catalyze consecutive condensation and cyclodehydration reactions, although the mechanism is unknown. To better understand Cy domain catalysis, here we report the crystal structure of the second Cy domain (Cy2) of yersiniabactin synthetase from the causative agent of the plague, Yersinia pestis. Our high-resolution structure of Cy2 adopts a conformation that enables exploration of interactions with the extended thiazoline-containing cyclodehydration intermediate and the acceptor carrier protein (CP) to which it is tethered. We also report complementary electrostatic interfaces between Cy2 and its donor CP that mediate donor binding. Finally, we explored domain flexibility through normal mode analysis and identified small-molecule fragment-binding sites that may inform future antibiotic design targeting Cy function. Our results suggest how CP binding may influence global Cy conformations, with consequences for active-site remodeling to facilitate the separate condensation and cyclodehydration steps as well as potential inhibitor development.


Assuntos
Domínio Catalítico , Peptídeo Sintases , Yersinia pestis , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Sideróforos/metabolismo , Yersinia pestis/química , Yersinia pestis/enzimologia
3.
J Biotechnol ; 320: 44-49, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32526262

RESUMO

Chinese hamster ovary (CHO) cells cultured in serum-free chemically-defined media (CDM) are used for manufacturing of therapeutic proteins. Growth factors, such as insulin are commonly utilized in manufacturing platforms to enhance CHO cell viability and growth. Here we report that insulin is degraded in the culture media over time mainly due to the activity of the insulin degrading enzyme (IDE). Insulin degradation was faster in cell lines that released more IDE, which negatively impacted cell growth and in turn, production titers. Deletion of the IDE gene in a representative CHO cell line nearly abolished insulin degradation in seed train and end-of-production media. In summary, our data suggests that selecting cell lines that have lower IDE expression or targeted-deletion of the IDE gene can improve culture viability and growth for insulin-dependent CHO production platforms.


Assuntos
Meios de Cultura Livres de Soro , Insulina , Insulisina , Animais , Reatores Biológicos , Células CHO , Técnicas de Cultura de Células , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Meios de Cultura Livres de Soro/química , Meios de Cultura Livres de Soro/metabolismo , Técnicas de Inativação de Genes , Insulina/análise , Insulina/metabolismo , Insulina/farmacologia , Insulisina/genética , Insulisina/metabolismo , Insulisina/farmacologia
4.
Cell Rep ; 21(8): 2031-2038, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29166595

RESUMO

All pathogens must acquire nutrients from their hosts. The intracellular bacterial pathogen Legionella pneumophila, the etiological agent of Legionnaires' disease, requires host amino acids for growth within cells. The mechanistic target of rapamycin complex 1 (mTORC1) is an evolutionarily conserved master regulator of host amino acid metabolism. Here, we identify two families of translocated L. pneumophila effector proteins that exhibit opposing effects on mTORC1 activity. The Legionella glucosyltransferase (Lgt) effector family activates mTORC1, through inhibition of host translation, whereas the SidE/SdeABC (SidE) effector family acts as mTORC1 inhibitors. We demonstrate that a common activity of both effector families is to inhibit host translation. We propose that the Lgt and SidE families of effectors work in concert to liberate host amino acids for consumption by L. pneumophila.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Legionella pneumophila/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Transporte/metabolismo , Doença dos Legionários/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia
5.
Science ; 355(6331): 1306-1311, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28336668

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) protein kinase is a master growth regulator that becomes activated at the lysosome in response to nutrient cues. Here, we identify cholesterol, an essential building block for cellular growth, as a nutrient input that drives mTORC1 recruitment and activation at the lysosomal surface. The lysosomal transmembrane protein, SLC38A9, is required for mTORC1 activation by cholesterol through conserved cholesterol-responsive motifs. Moreover, SLC38A9 enables mTORC1 activation by cholesterol independently from its arginine-sensing function. Conversely, the Niemann-Pick C1 (NPC1) protein, which regulates cholesterol export from the lysosome, binds to SLC38A9 and inhibits mTORC1 signaling through its sterol transport function. Thus, lysosomal cholesterol drives mTORC1 activation and growth signaling through the SLC38A9-NPC1 complex.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Motivos de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Animais , Transporte Biológico , Células CHO , HDL-Colesterol/metabolismo , Cricetulus , Ativação Enzimática , Fibroblastos , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/antagonistas & inibidores , Mutação , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores
7.
Nat Genet ; 48(2): 183-8, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26691987

RESUMO

Follicular lymphoma is an incurable B cell malignancy characterized by the t(14;18) translocation and mutations affecting the epigenome. Although frequent gene mutations in key signaling pathways, including JAK-STAT, NOTCH and NF-κB, have also been defined, the spectrum of these mutations typically overlaps with that in the closely related diffuse large B cell lymphoma (DLBCL). Using a combination of discovery exome and extended targeted sequencing, we identified recurrent somatic mutations in RRAGC uniquely enriched in patients with follicular lymphoma (17%). More than half of the mutations preferentially co-occurred with mutations in ATP6V1B2 and ATP6AP1, which encode components of the vacuolar H(+)-ATP ATPase (V-ATPase) known to be necessary for amino acid-induced activation of mTORC1. The RagC variants increased raptor binding while rendering mTORC1 signaling resistant to amino acid deprivation. The activating nature of the RRAGC mutations, their existence in the dominant clone and their stability during disease progression support their potential as an excellent candidate for therapeutic targeting.


Assuntos
Linfoma Folicular/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Complexos Multiproteicos/genética , Mutação , Serina-Treonina Quinases TOR/genética , Sequência de Aminoácidos , Animais , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/química , Complexos Multiproteicos/química , Homologia de Sequência de Aminoácidos , Serina-Treonina Quinases TOR/química
8.
J Phys Chem B ; 117(27): 8180-8, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23773139

RESUMO

This study introduces a new thermodynamic framework for aqueous reaction equilibria that treats water as a coreactant in the development of a general binding equation. The approach features an explicit consideration for the change in hydration that occurs when two solvated surfaces come into contact. As an outcome of this framework, the standard-state free energy of binding is defined by the summation of two terms: the traditional term (-RT ln Ki) plus a desolvation free-energy term that is weighted by the number of complexes formed at equilibrium. The new formalism suggests that the equilibrium ratio, Ki, is not a constant and that the observed concentration dependence of Ki may be used to obtain the molar desolvation energy and the standard-state free energy at infinite dilution. The governing equation is supported by results from isothermal titration calorimetry using the chelation of calcium(II) by EDTA as a model binding reaction. This work may have far-reaching implications for solution thermodynamics, including an explanation for the oft-noted discrepancy between the enthalpy values obtained by calorimetry and those from the van't Hoff approach.


Assuntos
Modelos Químicos , Água/química , Cálcio/química , Calorimetria , Ácido Edético/química , Concentração de Íons de Hidrogênio , Soluções/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...